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Finite-amplitude stability of axisymmetric pipe flow 
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The stability of pipe flow to axisymmetric disturbances is studied by direct numerical 
simulation of the incompressible Navier-Stokes equations. There is no evidence of 
finite-amplitude equilibria a t  any of the wavenumber/Reynolds number combinations 
investigated, with all perturbations decaying on a time scale much shorter than the 
diffusive (viscous) time scale. In  particular, decay is obtained where amplitude- 
expansion perturbation techniques predict equilibria, indicating that these methods 
are not valid away from the neutral curve of linear stability theory. 

1. Introduction 
It is generally accepted that pipe Poiseuille flow (Hagen-Poiseuille flow) is linearly 

stable to all disturbances (both axisymmetric and non-axisymmetric) a t  all Reynolds 
numbers (Sex1 1927; Lessen, Sadler & Lui 1968; Davey & Drazin 1969; Metcalfe & 
Orszag 1973; Salwen, Cotton & Grosch 1980). Therefore, the explanation of the 
observed transition to turbulence in this flow requires finite-amplitude instabilities. 

Finite-amplitude stability analyses of pipe flow have so far been restricted to 
axisymmetric disturbances (Davey & Nguyen 1971) and even these results are not 
without controversy (Itoh 1977; Davey 1978). I n  this paper, we use spectral methods 
to investigate numerically the behaviour of finite-amplitude axisymmetric disturb- 
ances in pressure-driven pipe flow. The basic question concerns the existence of 
finite-amplitude equilibrium states of this flow. If such states do not exist then pipe 
flow is stable to all axisymmetric disturbances. Available finite-amplitude analyses 
predict equilibria, but they are in disagreement over both results and methodology. 

2. Numerical methods 
The axisymmetric incompressible Navier-Stokes equations are, in rotation form, 

-- - -- 
at 

av an 
at ar 
_ -  - 

a a 
-(ru) +- ( rv)  = 0,  ax iir (3) 

where u and v are the velocities in the x and r directions, respectively, 

0 2  = +(a/&) ( d / a r ) ,  
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and w = av/ax- au/ar is the azimuthal vorticity. The boundary conditions on the 
velocities are 

u, w/r bounded ( r  = 0), u, w = 0 ( r  = 1); (4) 

R is the Reynolds number based on pipe radius and centre-line velocity. The constant 
pressure gradient term is assumed to be that of the laminar flow, namely 4/R, and 
l-I is the disturbance pressure head. 

We discuss briefly below four features of our numerical methods: spectral rep- 
resentation; time-stepping ; operator inversion; and initial conditions. The major 
difference between the present pipe-flow calculations and our plane channel-flow 
simulations (Orszag & Kells 1980; Patera & Orszag 1980) is that variable-coefficient 
equations must now be solved implicitly, whereas in planar geometry only constant 
coefficient equations require implicit solution. 

The velocities are expanded as 
P 

u(x ,  r ,  t )  = C, G(n,p, t )  eianzTz?,(r), 
InlGN p=O 

I )  

where the Chebyshev polynomials T,(r) are defined by 

T*( cos 8) = cos qo. 

The even (odd) nature of u(v )  follows naturally from the axisymmetry of the problem. 
Boundedness a t  the origin is then automatically imposed. Periodic boundary con- 
ditions are applied in x with periodicity interval 27r/a. 

A fractional time-stepping method (Orszag & Kells 1980) is used, each full step 
consisting of (i) a nonlinear step, (ii) a pressure step, and (iii) a viscous dissipation 
step. For the first fractional step a second-order Adams-Bashforth method is used: 

an.1 = un + At( ZJvnwn - lvn-lwn-l 2 + 4/R), 

= @+At( -ZJUnwn.+ 8 Un - u - ) ,  1 n 1 

where the superscript refers to time step. The nonlinear terms are calculated efficiently 
using transform methods and collocation (pseudospectral) techniques (Gottlieb & 
Orszag 1977). Products are evaluated in physical space while derivatives are cal- 
culated in spectral space. Transformations between the two representations are done 
using extensions of the fast Fourier transform algorithm. In the remainder of this 
section it is assumed that the velocities are in mixed representation, Fourier in x but 
physical in r .  The axial wavenumber of a Fourier mode will be denoted by y .  

Next, incompressibility is imposed with the pressure step 
A 

&n+l = &n+l-iyAtn* ( r  I) ,  ( 7 )  
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where we write II* rather than ll to indicate that the pressure obtained here is an 
intermediate result. Equations (7)-(10) can be combined to give a single equation 
for n*, 

(11) 
i a  
r ar 

(O2-y2)r* = iy@+l+- - (r@+l) (r c l), 

-- - 0 an* 
ar 

(T = 1). 

Note that n* is expanded in an even series of Chebyshev polynomials like (5). The 
solution of (1 1)-( 12)  is discussed below. 

In the final fractional step, viscous effects are included using the Euler backward 
scheme 

(13) 

unfl = 0 ( r  = l ) ,  (14) 

A At 
R (r 11, U n f l  = @+I + - ( 0 2  - p) un+l 

vn+l = 0 (r = 1) .  (16)  

The overall scheme is only first-order accurate in time because the viscous and pressure 
operators do not commute. Higher-order accuracy in time may be obtained by 
extrapolation methods. 

The implicit parts of the procedure given above all involve solution of an equation 
of the form 

(L -P2)#  = f  ( r  < 11, (17)  

aqb+b- aqb = 0 (r = l), 
8r 

for each Fourier mode, where L is a second-order (Laplacian) operator in r,  /32 depends 
only on the x-Fourier index (not r ) ,  and a and b are constants independent of Fourier 
mode. We discuss briefly here the discretization of L and the method of inversion. 
For planar geometries L can be written as a tri-diagonal system using a Chebyshev 
tau-method (Orszag & Kells 1980). This system can then be inverted in O(P)  operations 
for each x-Fourier mode. The curvature terms introduced by the cylindrical geometry 
destroy the tridiagonal property of the tau-method matrix, and collocation then 
becomes more attractive due to the ease with which variable coefficient problems can 
be handled. 

To solve the full matrix equations resulting from the collocation approximation of 
(17)-(18), an eigenfunction solver is used that reduces the operation count from 
O(P3) to O(P2) while only requiring the storage of one P x P matrix for given (L ,  a, b ) .  
More precisely, we diagonalize the collocation approximation to L as 

L = YP-lAYP. 

The solution to (17)-( 18) can then be written as 

$ = Y-1(A-/321)-1Yf. 

The diagonalization (independent of Fourier mode) is done in a pre-processing stage. 
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R 

Re w 
Im w 
Perturbation energy 
spatial resolution 
(2N x ( P +  1)) 

a 

At 
Final time, T 
Computed Re w 
Computed Im o 

Wall Mode 

1600 
5.8 
1.5849 

1 x 10-10 
- 0.5396 

8 x 33 
0.005 

1.5836 
10 

- 0.5410 

TABLE 1. Behaviour of linear modes 

Centre Mode 

500 
6.2 
5.8852 

- 0.3917 
1 x 10-10 

8 %  17 
0.01 

5.9146 
10 

- 0.3876 

Finally, the initial conditions for the runs presented here are of the form 

v(x, T ,  t = 0) = ( 1  - r2) x + Av,(x, r )  

where v = (u, v )  and vL is an eigenfunction of the fourth-order linear stability equation 
obtained from (1)-(3) by assuming a solution of the form 

v = (1  - r2) x + e+(r) ei(z-wt)a 

and linearizing with respect to E .  The magnitude of the perturbation is characterized 
by its energy relative to that of the unperturbed flow: 

E = 12 (u2+v2)r&. SD' 
The details of the linear problem are well-documented (Lessen et al. 1968; Davey & 
Drazin 1969; Salwen et al. 1980) and will not be discussed here. The numerical 
procedure used to determine the eigenvalue w and eigenfunction $(r) for given R, a: 
is similar to that described by Orszag (1971) for planar geometries, except that 
collocation rather than the tau-method is used. 

3. Results 
Before investigating finite-amplitude behaviour it is necessary to confirm that the 

direct simulation gives decay rates and phase velocities in agreement with those pre- 
dicted by linear theory. The results of two such tests are summarized in table 1, where it 
is seen that the code adequately resolves both centre and wall modes a t  modest time 
steps (even without usingextrapolation methods to reduce the first-orders error in time). 

The results of linear theory can also be used to test whether interactions between 
a primary mode and its harmonic are accurately simulated. For pipe flow, a centre 
mode with wavenumber a: nearly resonates with its harmonic in the sense that the 
phase speed of the mode with wavenumber 201 is very close to that of the primary. 
If one assumes they resonate exactly (i.e. w , ~  = 2wlr), the harmonic will obey a forced 
amplitude equation of the form 
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FIGURE 1. The ratio of the time at  which the harmonic attains its maximum to the time predicted 
by linear theory (assuming perfect phase-locking) is plotted as a function of Reynolds number 
when a = 1. The actual (computed) time is less than the predicted linear theory time because 
the real frequency of the harmonic is not exactly twice that of the primary. 

and thus A ,  grows secularly in t for short times and attains a maximum at  

In ( - 2wli) - In ( - wzd) 

- 20,i + w,i 
t: = 

As the modes are not exactly phase-locked, we would expect the actual maximum to 
occur a t  t* < t:. This behaviour is verified in figure 1 by a plot of t * / tF a t  a = 1 for 
various Reynolds numbers. The maximum deviation between (20) and our direct 
simulations is - 3 yo. 

Next, we study finite-amplitude disturbances predicted to be dangerous by the 
method of false problems. Davey & Nguyen (1971) find that the two disturbances 
tested above a t  very small amplitude (see Table 1) have threshold (unstable equili- 
brium) energies (19) of E 21 0.003. The method of Itoh (1977) as applied by Davey 
(1978) indicates that the centre mode should decay a t  finite amplitude, however it too 
predicts a small-amplitude equilibrium state for the wall mode. To test these theoretical 
results, the same series of runs reported in table 1 were repeated except that  the 
axial and radial resolution was increased, the time integration was taken to a final 
time of T = 20 rather than T = 10, and the initial energies of the disturbance were 
taken to  be 0.01. The results for the wqll mode and centre mode are shown in figures 
2 and 3 respectively, as plots of the logarithm of the primary and secondary energies as 
a function of time. There is apparently no evidence of equilibria. Runs a t  lower and 
higher initial energies (e.g. E N 0.04 or amplitudes of order 20 yo) decay in a similar 
manner. Note that the normalization of E chosen in (19) implies that centre modes 
have larger initial velocity amplitudes than wall modes with the same energy. 

The lack of equilibria reported above does not preclude their existence for other 
Reynolds-number/wavenumber combinations. However, in a variety of runs, we 
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FIGURE 2. Decay of a wall mode at R = 1600, a = 5.8 from an initial energy (E = 0.01) larger 
than the equilibrium value predicted by the method of false problems. Higher energy disturb- 
ances also decay. Here E is the energy of the disturbance relative to the mean Aow [defined in 
(19)]. Also, AT = 8 and P = 64 in (4)-(5). The accuracy of this and other runs waa tested by 
changing N ,  P and the time step At. 

t 20 
0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

-50 L 
FIGURE 3. Decay of a centre mode at R = 500, a = 6-2 from an initial energy (E  
larger than the equilibrium value predicted by perturbation theory. Here N = 8 and 
in (4)-(5). 

= 0.01) 
P = 32 

have found no finite-amplitude steady-states. The results of a typical run at R = 4000 
a = 1.0, w = 0.3783 -i0.1025, are plotted in figure 4. From figure 4 we infer that the 
disturbance at R = 4000 decays in a time very short compared to a diffusive time 
scale, and is therefore consistent with the absence of equilibria (Orszag & Patera 
1980). 
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FIGURE 4. Decay of a wall mode at R = 4000, a = 1. The decay occurs on a time scale much 
shorter than the diffusive scale indicating the absence of equilibria. Here N = 8 and P = 32 
in (4)-(5). 

The time scale for decay of finite-amplitude axisymmetric states is central to  an 
understanding of three-dimensional transition. The three-dimensional instability 
mechanism leading to transition in plane Poiseuille and Couette flows (Orszag & 
Patera 1980) develops on a time scale significantly shorter than the time scale on 
which two-dimensional perturbations of these flows decay. This three-dimensional 
instability of plana,r channel flow is also relevant to  transition in pipe flow. The 
behaviour of non-axisymmetric disturbances to decaying axisymmetric states will be 
considered in a later paper. 

Our results indicate that the method of false problems is not a valid procedure for 
investigating finite-amplitude axisymmetric perturbations to pipe flow. We do not 
attempt a critique of these methods here except to emphasize a point made by Herbert 
(1977). Herbert commented that the retention of only the first term in the amplitude 
expansion of the frequency without knowing the convergence properties of the series 
can lead to incorrect conclusions, especially in cases (such as pipe flow and plane 
Couette flow) where there is no linear neutral curve. The radius of convergence of the 
amplitude expansion may simply be too small to predict equilibria. For example, 
numerical simulations of plane Couette flow (Orszag & Kells 1980; Patera & Orszag 
1980) do not confirm the existence of two-dimensional equilibria predicted by Davey 
& Nguyen (1971) on the basis of amplitude expansions, The direct iteration procedure 
of Herbert (1977) bypasses this problem and can predict the existence of equilibria 
as well as their threshold energy. However, a limited survey of the available,phase 
space has not yet yielded any finite-amplitude solutions. We suspect there are none. 

This work was supported by the Office of Naval Research under Contract N00014- 
77-(2-0138 and the National Aeronautics and Space Administration under Contract 
no. NASI-15894. 
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